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The Challenge of Financial Forecasting

A Complex Data Environment

Financial forecasting requires integrating diverse and asynchronous
data sources.

These sources include dense, high-frequency market data; sparse
sentiment signals; and infrequent fundamental reports.

Each data type has a unique temporal resolution, statistical
properties, and rate of information decay.

Our Solution: The MS-MRFN

We introduce the Multi-Stock Multimodal Multi-Resolution
Fusion Network (MS-MRFN).

It’s a deep learning architecture designed specifically to handle these
challenges.
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Core Principles of the MS-MRFN

Three critical requirements form the foundation of our architecture:

1 Respect native sampling frequencies: Avoid information distortion
from resampling by processing data at its natural timescale.

2 Explicitly model data staleness: Treat the absence of data and the
age of information as explicit features, rather than using simple
imputation. This allows the model to learn how to treat stale versus
fresh information.

3 Maintain strict time oredering: Ensure predictions at time t only
use information available at or before t to prevent information leakage
from the future.
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High-Level Architecture Overview

Structure

The MS-MRFN consists of three parallel, modality-specific encoders whose
outputs are combined by a fusion module and a prediction head.
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Encoder 1: Multi-Frequency Returns

Goal

Capture market dynamics across multiple time horizons simultaneously.

Temporal Convolutional Networks (TCNs):
A separate TCN is used for each frequency (e.g., daily, weekly).
Each TCN uses a dilation rate (Pf ) matched to its frequency’s period.
This ensures the receptive field aligns with the data’s period (e.g., a
weekly TCN looks at data points from t, t − 5, t − 10, . . . ).

Fusion & Temporal Modeling:
The outputs from all frequency-specific TCNs are concatenated.
An LSTM processes this combined vector to model interactions
between the different frequency components.
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Encoder 2: Sparse Sentiment Data

Goal

Process sparse and irregularly-timed sentiment signals while accounting for
data staleness.

Augmented Input:
Instead of just raw values, the input vector is augmented.
It includes the sentiment score (X (S)), a binary presence mask (M(S)),
and a staleness feature (∆(S)) representing time since the last update.

Processing:
This augmented sequence is fed into a TCN-LSTM stack.
This allows the model to learn to rely heavily on new information but
discount its value as it becomes older.
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Encoder 3: Fundamental Events (Part 1)

Goal

Encode discrete, low-frequency fundamental reports (e.g., quarterly
earnings) and align them with daily market data.

Event Encoding with a Transformer:
The sequence of a stock’s fundamental reports is treated like a
sentence.
A Transformer Encoder processes this sequence to create
contextualized embeddings for each report.
This captures the financial history and trends, rather than treating
each report in isolation.
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Encoder 3: Fundamental Events (Part 2)

Daily Alignment with Cross-Attention:
To use this event-level data on a daily basis, a cross-attention
mechanism is employed.

The daily market state (H
(R)
t,s ) from the Returns Encoder acts as the

”query”.
It attends to the sequence of fundamental report embeddings (the
”keys” and ”values”).
This dynamically selects the most relevant historical fundamental data
for the current market context.
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Encoder 3: Fundamental Events (Part 3)

Staleness Conditioning with FiLM:
The attended fundamental vector (F̂t,s) represents what information is
relevant.
We use a Feature-wise Linear Modulation (FiLM) layer to condition
this on how relevant it is based on its age.
The FiLM layer uses the time since the last report and time until the
next report to generate a gain (η) and bias (β).
This modulation can amplify or suppress features based on their
position in the earnings cycle.
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Fusion and Prediction

Goal

Adaptively combine the representations from the three encoders to make a
final prediction.

Concatenation:
The output representations from the Returns (H(R)), Sentiment (H(S)),
and Fundamentals (F̂ ⋆) encoders are concatenated.

Gated Linear Unit (GLU) Fusion:
A GLU is used to fuse these representations.
It employs a gating mechanism to dynamically control the information
flow, selecting the most useful features for the prediction.

Prediction Head:
The final fused vector (Zt,s) is passed to a linear layer to produce the
forecast (e.g., classification or regression).
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Inputs and Data Structure

For each stock s and day t:

Multi-Frequency Returns: X
(R,f )
t,s ∈ Rdf for each frequency f ∈ F .

Sentiment Data: A tuple containing:

Features: X
(S)
t,s ∈ RdS

Presence Mask: M
(S)
t,s ∈ {0, 1}

Staleness: ∆
(S)
t,s ∈ R≥0 (days since last update)

Fundamental Events:
A sequence of reports X

(F )
k,s ∈ RdF at times τk,s .

Daily staleness indicators: ∆
(F )
since and ∆

(F )
to .
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Returns Encoder Equations

1 Frequency-Matched TCN Layer:

Y
(f )
t,s = ReLU

(
k−1∑
i=0

W
(f )
i · X (R,f )

t−i ·Pf ,s
+ b(f )

)

The full stack produces Z
(R,f )
1:T ,s = TCNPf

(X
(R,f )
1:T ,s ).

2 Concatenation and LSTM:

Z
(R)
t,s =

⊕
f ∈F

Z
(R,f )
t,s

H
(R)
1:T ,s = LSTMR(Z

(R)
1:T ,s)

This yields the final market state representation H
(R)
t,s .
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Sentiment Encoder Equations

1 Augmented Input Vector:

X̃
(S)
t,s =

[
X

(S)
t,s ; M

(S)
t,s ; ϕ(∆

(S)
t,s )
]

where ϕ(·) is a positional encoding for the staleness feature.

2 TCN-LSTM Stack:

Z
(S)
1:T ,s = TCNS(X̃

(S)
1:T ,s)

H
(S)
1:T ,s = LSTMS(Z

(S)
1:T ,s)

This produces the daily sentiment state representation H
(S)
t,s .
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Fundamentals Encoder Equations (1/2)

1 Event Encoding (Transformer):

E1:Ks ,s = TransformerF (X
(F )
1:Ks ,s

) ∈ RKs×dH

This creates contextual embeddings for each of the Ks reports.

2 Cross-Attention (Query, Key, Value):

Qt,s = WQH
(R)
t,s (from Returns Encoder)

Kk,s = WKEk,s (from Transformer)

Vk,s = WVEk,s (from Transformer)

Miquel Noguer i Alonso (Artificial Intelligence Finance Institute)MS-MRFN September 15, 2025 15 / 19



Fundamentals Encoder Equations (2/2)

3 Cross-Attention (Output):

F̂t,s =
∑

k s.t. τk,s≤t

αt,k,sVk,s

where αt,k,s are masked softmax attention weights.

4 FiLM Modulation:

[ηt,s , βt,s ] = MLP(Γt,s)

F̂ ⋆
t,s = ηt,s ⊙ F̂t,s + βt,s

where Γt,s is a vector of staleness indicators. This produces the final
fundamentals representation F̂ ⋆

t,s .
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Fusion and Prediction Equations

1 Concatenation:
Ut,s = [H

(R)
t,s ;H

(S)
t,s ; F̂

⋆
t,s ]

2 GLU Fusion:

Zt,s = (WzUt,s + bz)⊙ σ(WgUt,s + bg )

where σ is the sigmoid function and ⊙ is element-wise multiplication.

3 Prediction Head (Binary Classification):

p̂t,s = σ(w⊤Zt,s + b)
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Training Protocol

Preventing Lookahead Bias

The model is trained using a rigorous walk-forward validation scheme.

The dataset is split into chronological training, validation, and unseen
test sets.

This process can be repeated on a sliding window to assess
performance across different market regimes.

Time ordering Enforcement

All components are designed to be strictly time oredered.

TCNs use padding, and the cross-attention mechanism is masked to
prevent attending to future fundamental reports.
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Conclusion and Future Work

Summary

MS-MRFN offers a principled architecture for multimodal financial
forecasting in a multi-stock environment.

It systematically addresses the challenges of asynchronous and
heterogeneous data by:

Respecting native data frequencies.
Explicitly modeling data staleness.
Strictly enforcing time ordering.

Its modular design provides a powerful framework for synthesizing
market, sentiment, and fundamental data.

Future Work

Future work could explore incorporating graph-based structures to
model inter-stock relationships (e.g., supply chains, sector
correlations) directly within the architecture.
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