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Teoría de Carteras Moderna

Sus estimaciones muestrales conducen a un desempeño muy deficiente fuera de muestra debido a la incertidumbre en los 
parámetros. La gestión tradicional de carteras (Markowitz, CAPM, APT) asume: 

• Distribuciones normales y riesgos estables. 
• Covarianzas fijas en el tiempo. 

En la práctica, los mercados presentan: 

• Cambios de régimen (crisis financieras, pandemias, inflación). 
• Riesgos ocultos y correlaciones espurias. 
• Resultado: estrategias frágiles que fallan cuando más se necesitan 

Figura 1: Limites de la diversificación. Statman (1987) 
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Problemas de la inversión con factores

• Correlaciones espurias 
• Efectos nolineales 
• Inestabilidad temporal. Los factores y sus relaciones con los rendimientos 

pueden cambiar con el tiempo. 
• Multicolinealidad. Correlaciones altas entre factores pueden dificultar la 

interpretación y precisión del modelo. 

Falta Predictabilidad (Machine Learning) 

Periodo Antes Después 
(Bruto)

Después 
(Neto)

Dif. (Bruto-
Antes)

Dif. (Neto-
Antes)

Todos los 
años antes y 
después de la 
cotización

3.07%*** 

(4.87)
-1.24%*** 

(-3.33)
-1.43%*** 

(-3.69)
-4.31%*** 

(-4.68)
-4.50%*** 

(-4.79)

(-1 Año, +1 
Año) 
alrededor de 
la cotización

1.64%*** 

(3.69)
0.17% 

(0.32)
-0.13% 

(-0.29)
-1.47%** 

(-2.79)
-1.77%*** 

(-3.25)

(-2 Años, +2 
Años) 
alrededor de 
la cotización

1.20%** 

(2.66)
-0.29% 

(-0.69)
-0.52% 

(-1.17)
-1.49%** 

(-2.27)
-1.72%** 

(-2.56)

(-3 Años, +3 
Años) 
alrededor de 
la cotización

1.60%*** 

(4.32)
0.02% 

(0.03)
-0.19% 

(-0.26)
-1.59%** 

(-2.01)
-1.80%** 

(-2.24)

Figura 2: Rendimiento del Índice Antes de la Cotización y del ETF Después de la 
Cotización. Los números entre paréntesis son los valores t-estadísticos.* p<0.10, 
** p<0.05, *** p<0.01 (Huang S et al., 2024) 
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Figura 5: Espacio proyectivo 
entre el valor predicho y el real 
(arriba). Frontera eficiente en 
rojo (con factores), intermedia 
entre el caso incondicional 
(Markowitz) en amarillo y el 
real (abajo).

Factores como espacios proyectivos
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Figura 3: Caso no condicionado (Markowitz). Predicción (arriba) y 
frontera eficiente de la solución Mean Variance (abajo) Figura 4: Caso condicionado (Factores). Modelo predictivo y espacio 

proyectivo para coberturas.
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Un problema de geometría proyectiva
𝑃𝑡 → (𝑟𝑡, 𝜎𝑡) → [𝑎1, …𝑎𝑁]

𝑑𝑎𝑡 = 𝜇𝑎𝑎𝑡𝑑𝑡 + 𝜎𝑎𝑎𝑡𝑑𝑊𝑡 𝜇𝑎

𝜎
𝑎 𝑑𝑊

𝑡

𝐸[𝑎1]

𝐸[𝑎𝑁]
𝐸[𝑃 ]

𝐸[𝑎1 |𝐷]

𝐸[𝑎𝑁 |𝐷]
𝐸[𝑃 |𝐷]

Fig 6: Dinámicas condicionales vs incondicionales

𝑎1
𝑎2

𝑎𝑁

Mercados

𝒅𝑷𝒕 = 𝝁𝒑𝑷𝒕𝒅𝒕 + 𝝈𝒑𝑷𝒕𝒅𝑾𝒕

𝝁𝒑

𝝈𝒑

Dinámicas de Drivers

=Todo(𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑐𝑖𝑜𝑛𝑒𝑠 𝑅𝑖𝑒𝑠𝑔𝑜𝑠,  𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑎𝑠 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑐𝑖ó𝑛,  𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑐𝑖ó𝑛)

𝐷𝑒𝑝𝑒𝑛𝑑𝑒 𝑑𝑒𝑙 𝑒𝑠𝑝𝑎𝑐𝑖𝑜 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑣𝑜 𝑞𝑢𝑒 𝑠𝑒 𝑢𝑠𝑒

Fig 7: Dinámicas de la cartera vs mercados financieros

Fig 8: Geometría en el caso de Markowitz mostrando el portfolio tangente 
(optimo), el elipsoide es la matriz de covarianzas y la frontera eficiente en rojo.
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o Primer problema: Variables exógenas + endógenas = riesgos idiosincráticos + sistemáticos. 

Los factores añaden la posibilidad de cubrir el riesgo sistemático en la optimización de portafolios. Sin embargo, para mantener el máximo nivel de diversificación del riesgo 
idiosincrático al añadir el sistemático, las variables exógenas deben cumplir ciertas propiedades. 

o Segundo problema: Relación entre los activos y la dinámica de la cartera. 

Las dinámicas de los activos individuales tienen sus drivers óptimos (causales + persistentes + mejores predictores). Cuando el enfoque está en la optimización de la cartera 
-> Diversificación, nos importan los activos individuales, sino la dinámica de diversificación del de la cartera. Drivers óptimos de diversificación idiosincrática + sistemática.  

o Tercer problema: La causalidad es difícil -> probabilidad de causalidad (herramientas accesibles para la diversificación causal). 

o Cuarto problema: Las dinámicas de los activos y del portafolio pueden modelarse mediante PDEs, a partir de las cuales las sensibilidades pueden aproximarse con ML.

¿Que se necesita superar?
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• Solución basada en sistemas dinámicos PDEs/SPDEs con un marco causal genérico para la diversificación del riesgo de cartera. 

• PDEs/SPDEs para modelar la dinámica de activos y carteras con respecto a sus drivers óptimos en términos de causalidad y persistencia. 
• Los drivers óptimos para activos individuales no son la solución -> Enfoque en drivers causales comunes para un portafolio (Principio de Causa Común de Reichenbach, 

1956). 
• Las sensibilidades de los componentes de una cartera respecto a sus drivers comunes se aproximan con redes neuronales. 
• Los activos de la cartera se proyectan en espacios de drivers comunes causales o planos tangentes, donde los activos son independientes. 
• La optimización de carteras mantiene la máxima diversificación idiosincrática de Markowitz, añadiendo diversificación sistemática gracias al espacio causal común. 

Solución propuesta: 



Un Modelo para las Dinámicas de Activos y Carteras
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• Dado los retornos de un activo, A, un de conjunto de drivers : 

• Uno modelo PDE:  

• Optimalidad de Drivers:  
• Optimo en Persistencia 
• Optimo en Probabilidad de Causalidad 

• Drivers específicos son los óptimos para los activos individuales. 

• Principio de Comunalidad para Drivers Óptimos de Cartera (Rodriguez Dominguez, 2023) : Los drivers óptimos para una cartera, una elección óptima 
tanto en términos de persistencia como de probabilidad de causalidad para una cartera, son los drivers específicos que se comparten más entre todos los 
componentes de la cartera o que se seleccionan repetidamente como drivers específicos en el mayor número de componentes de la cartera.

𝑥1, . . , 𝑥𝑚

A(𝑡) = 𝐹( 𝜕𝐴(𝑡)
𝜕𝑥1(𝑡)

,
𝜕𝐴(𝑡)
𝜕𝑥2(𝑡)

, …,
𝜕𝐴(𝑡)
𝜕𝑥𝑚(𝑡)

,
𝜕𝑥1

𝜕𝑡
, …,

𝜕𝑥𝑚

𝜕𝑡
,

𝜕𝐴𝑡

𝜕𝑡
, 𝑥1, . . , 𝑥𝑚)

Figura 9: Representación SCM del Principio de Comunalidad: los factores latentes  influyen en los 
drivers que determinan los rendimientos de los activos  y, en última instancia, los pagos del 
portafolio 

𝑍𝑡
𝑋𝑡,   𝐴𝑡

𝑝𝑡 .
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Principio de Causa Común de Reichenbach (RCCP)

La correlación entre dos variables debe existir, ya sea porque una causa la otra variable, o viceversa, o porque existe 
una tercera causa de esa correlación. Reichenbach establece un conjunto de reglas que la causa común debe cumplir 
para existir, pero que al final son propiedades estadísticas comunes.  

  

  

  

 

𝑃(𝐴𝐵 𝐶) = 𝑃(𝐴 𝐶)𝑃(𝐵 𝐶)

𝑃(𝐴𝐵 𝐶𝐶) = 𝑃(𝐴 𝐶𝐶)𝑃(𝐵 𝐶𝐶)
𝑃(𝐴 𝐶) > 𝑃(𝐴 𝐶𝐶)
𝑃(𝐵 𝐶) > 𝑃(𝐵 𝐶𝐶)

A

C

B

Fig 10: Bifurcación de Confusión



Principio de Comunalidad para la Selección óptima de Drivers de una Cartera 
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Una partición de un espacio de probabilidades, , se dice que es un sistema de causa común estadística ϵ-común 
(ϵ-SCCS) para y , si todos sus miembros son diferentes de y , y cada miembro  cumple la condición 
(Reichembach, 1956): 

	 	 	 	 	 	  

Se busca drivers, en un mercado de miles (M>>m), tal que se cumpla el Principio de Comunalidad:  

𝑋𝑚
𝐴𝑖  𝐴𝑗 𝐴𝑖  𝐴𝑗 𝑋𝑚

𝑃(𝐴𝑖𝐴𝑗 𝑋𝑚) = 𝑃(𝐴𝑖 |𝑋𝑚)𝑃(𝐴𝑗 |𝑋𝑚) ≤ 𝜖

𝑿𝒎 = {𝑋1, . . , 𝑋𝑚} 

min
𝑋𝑚⊂𝐶, 𝑋𝑚 =𝑚 

𝑛

∑
𝑖=1

𝑛

∑
𝑗 = 1
𝑗 ≠ 𝑖

(𝑃(𝐴𝑖𝐴𝑗 |𝑿𝒎) − 𝑃(𝐴𝑖 |𝑿𝒎)𝑃(𝐴𝑗 |𝑿𝒎)) ≤ 𝑚𝜖,  ∀𝑚 = 1:4:𝑀

X
1

X
2

X
3

X
4

A1 A2 A3

𝜌13

𝜌23𝜌12

. . . .. .. .
.
.. .. . . . . .

Figura 11: Grafo causal para la selección optima del conjunto de drivers 
causales comunes según el principio de comunalidad para el caso de m=4 
drivers ( ) y n=3 activos (A)𝑿𝒎
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Optimización en el espacio de drivers 
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Optimización en el espacio de drivers 

Figura 12: Optimización en 
el espacio de drivers 
causales (Rodriguez 
Dominguez, 2025b)
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Optimización en planos tangentes a la Variedad Causal



𝐴3
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.
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𝑠11 | 𝑁𝑁1
𝑥𝑛

𝑠13 | 𝑁𝑁1
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𝑠12 | 𝑁𝑁1
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Estimación del espacio de sensibilidades causales de la cartera
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….

X

X

𝐴1

𝐴𝑛

𝜕𝐴1

𝜕𝑥1
(𝑡)…

𝜕𝐴1

𝜕𝑥𝑚
(𝑡) = [𝑠11 | 𝑁𝑁1

𝑥𝑛
…𝑠1𝑚 | 𝑁𝑁1

𝑥𝑛 ]

𝜕𝐴𝑛

𝜕𝑥1
(𝑡)…

𝜕𝐴𝑛

𝜕𝑥𝑚
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𝑥𝑛
…𝑠𝑛𝑚 | 𝑁𝑁𝑛
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….

Figura 13: Obtención de los vectores de sensibilidad de los constituyentes , respecto a los drivers comunes causales . 
(Rodriguez Dominguez, 2023)

𝐴1, …, 𝐴𝑛 𝑋1, …, 𝑋𝑚

Figura 14: Espacio 
incrustado de 
sensibilidades con las 
proyecciones de los 
activos (Rodriguez 
Dominguez, 2023)



Mapeo de Riesgos: Método de Paridad de Sensibilidad Jerárquica (HSP)
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𝑤𝑠 = argmi𝑛
𝑤

𝐹(𝑅𝑖𝑒𝑠𝑔𝑜𝑠(𝑤𝑠))𝑤𝑃 = argmi𝑛
𝑤

𝐹(𝑅𝑖𝑒𝑠𝑔𝑜𝑃(𝑤))

𝑅𝑖𝑒𝑠𝑔𝑜𝑃(𝑤𝑃)) =
𝐸[(𝑋 − 𝜇)𝑛]

𝜎𝑛
???

𝑅𝑖𝑒𝑠𝑔𝑜𝑠(𝑤𝑠)) = 𝐹(𝑤𝑠, 𝑠)

𝐺:(𝑅𝑖𝑠𝑘𝑠(𝑤𝑠), 𝑤𝑠) → (𝑅𝑖𝑠𝑘𝑝(𝑤𝑝), 𝑤𝑝)

𝐻𝑠𝐻𝑝

𝐻𝑝 = 𝑓(𝑀𝑎𝑡𝑟𝑖𝑧 𝐶𝑜𝑟𝑟 . ) 𝐻𝑠 = 𝑓(𝑀𝑎𝑡 .  𝑆𝑒𝑛𝑠)

𝑤𝑝 = 𝑓(𝜎(𝐻𝑝)) 𝑤𝑠 = 𝑓(𝜎(𝐻𝑠))
Figura 15: Mapeo de Riesgos desde el espacio causal de sensibilidades a espacios con medidas de riesgo manejables o de 
interés (varianza, volatilidad, cVaR)



Método de Paridad de Sensibilidad Jerárquica (HSP)
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Matriz de distancias entre los constituyentes de la cartera en el espacio de sensibilidades. 

 

Para resolver la optimización convexa, se aplica el clustering jerárquico a la matriz de sensibilidades y se utilizan las volatilidades de los clusters para 
encontrar los pesos, de manera similar a lo que otros métodos hacen con la matriz de correlación, como la Paridad de Riesgo Jerárquica (Lopez de Prado, 
2016) o la Contribución de Riesgo Igualitaria Jerárquica (T. Raffinot, 2018). Así, el nombre Paridad de Sensibilidad Jerárquica (Rodriguez Dominguez, 2023). 
Existen otros métodos numéricos disponibles para abordar la no invertibilidad de .

𝐒 =
s11 ⋯ s1𝑁
⋮ ⋱ ⋮

sN1 ⋯ sNN

,  sij = d( 𝜕𝐴i

𝜕𝑿𝒎
,

𝜕𝐴j

𝜕𝑿𝒎 ) = d(→
𝜷𝒊 ,

→
𝜷𝒋) = d([β1

i , . . , βM
i ], [β1

j , . . , βM
j ])

𝑿𝒎



Resultados: Paridad de Sensibilidad Jerárquica (HSP)

4

0

750

1500

2250

3000

12/3/2006 11/2/2008 10/3/2010 9/2/2012 8/3/2014 6/30/2016 5/31/2018 4/30/2020 3/31/2022 2/29/2024 1/29/2026

HSP Out HSP In Min Vol 1/N HRP

HSP Out HSP In Min Vol 1/N HRP
NAV0 99,9649605 99,79877 100,2275 100,1447 99,67657
NAVf 2729,07 2107,34 1236,50 1706,29 1533,85
Total Return 2630,02% 2011,59% 1133,70% 1603,82% 1438,83%

Yield Annual Return17,43% 15,97% 12,98% 14,77% 14,20%
Vola 23,02% 23,07% 22,89% 22,06% 21,99%

Sharpe 0,76 0,69 0,57 0,67 0,65

Fig 16 Inversiones a Largo Plazo. (HSP, HRP (de 
Prado, 2016), Markowitz, 1/N) (Rodriguez 
Dominguez, 2023) 

Fig 17: De 2001 a 2010. 2008 La Gran Crisis Financiera. HSP en azul vs 1/N 
y variantes de Mean Variance 
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Soluciones con espacios causales dinámicos

Figura 18: Variedad causal y planos tangentes formados por las sensibilidades (Izquierda). La variedad Causal en dos instantes 
de tiempo y como el plano tangente surfea la variedad local y globalmente en dos tiempos (t’ y t) respectivamente (Derecha). 
(Causal Portfolio Optimization, Rodriguez Dominguez, 2025a)



 Vasicek 
 Hull-White 

𝑑𝑠𝑡 = 𝑎(𝑏 − 𝑠𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡
𝑑𝑠𝑡 = (𝜃𝑡 − 𝛼𝑡 𝑠𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡

Gestión de carteras mediante modelización de 
sensibilidades

𝑠1𝑡

𝑠2𝑡
𝑠3𝑡

𝑠1𝑇

𝑠2𝑇

𝑠3𝑇𝑑𝑠1𝑡
⋮

𝑑𝑠3𝑡 t

t=1
t=30

𝑠11 ⋯ 𝑠1𝑀
⋮ ⋱ ⋮

𝑠𝑁1 ⋯ 𝑠𝑁𝑀

(𝑡)

Simulaciones Montecarlo
𝑠11 ⋯ 𝑠1𝑀
⋮ ⋱ ⋮

𝑠𝑁1 ⋯ 𝑠𝑁𝑀

(𝑡 + 30)…… …… ……

…… ……

Matrices de distancia basadas en S en cada t

𝑺 =
𝑠11(1) + . . + 𝑠11(30) … 𝑠1𝑁(1) + . . + 𝑠1𝑁(30)

⋮ ⋱ ⋮
𝑠N1(1) + . . + 𝑠N1(30) … 𝑠NN(1) + . . + 𝑠NN(30)

W=HSP(S)

Figura 19: Variedad en dos instantes de tiempo y las SDEs de las sensibilidades que los unen (Izquierda). Simulación de las sensibilidades a futuro y 
construcción de matrices de distancia en los espacios de sensibilidades posteriores. Aglutinadas después en una gran matriz para resolver HSP 
(Derecha). (Causal Portfolio Optimization, de Rodriguez Dominguez, 2025a)



Resultados Numéricos
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Máximo Sharpe por intervalo y nº de factores (selección 
combinada + filtrado PF)

Máximo Sharpe por intervalo y nº de factores (selección por 
correlación + filtrado EKF). Cada celda muestra el mejor 
Sharpe dentro de su clase (V, RAW, CPCM-B)

Sharpe promedio por intervalo y nº de factores según 
selección de drivers y filtro (V = promedio V1–V4 en 
manifold dinámica; RAW = baseline sin adaptar; CPCM-B = 
baseline adaptado en manifold)

Media ± desviación estándar del Sharpe por método (selección de 
drivers + estimación de estado), variante y nº de factores.

50

112.5

175

237.5

300

11/2/2008 4/2/2009 9/2/2009 2/2/2010 7/5/2010 12/5/2010 5/5/2011 10/5/2011 3/6/2012 8/6/2012 1/6/2013 6/6/2013 11/6/2013 4/8/2014
HSP Out HSP In HSP In Vasicek HSP Out Vasicek

Fig 20: NAVs de path dependent HSP con Vasicek vs original HSP



Conclusiones
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• Framework de gestión de carteras que incorpora la dinámica de la diversificación y su trayectoria. 
• Flexible en la selección de drivers causales comunes (principio de comunalidad), garantizando un espacio geométrico 

coherente. 
• Mantiene la diversificación del enfoque no condicionado de Markowitz y añade diversificación sistemática al trabajar en el 

espacio de drivers. 
• Dinámicas y sensibilidades estimables con modelos lineales (interpretables) o no lineales (p. ej., redes neuronales). 
• Optimiza en cualquier medida de riesgo (volatilidad, CVaR/ES, drawdown, etc.) mediante mapeos desde el espacio causal 

común. 
• También permite optimizar en el propio espacio causal con métodos clásicos: Markowitz, Black-Litterman, Entropy Pooling, 

entre otros. 
• Mejores y más robustos resultados por régimen: mayor Sharpe, menor turnover y más estabilidad, especialmente con 

variedades dinámicas y Redes Neuronales. 
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Exención de responsabilidad: Ni Miralta Asset Management SGIIC, S.A.U. ni sus representantes o asesores responderán en forma 
alguna de daños que se deriven del uso de este documento o de su contenido o que traigan causa en 
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Derechos reservados: Todos los derechos de propiedad intelectual e industrial de estas páginas son titularidad de Miralta Asset 
Management SGIIC, S.A.U. Queda prohibida su reproducción, distribución, comunicación pública y 
transformación.Igualmente, todos los nombres comerciales, marcas o signos distintos de cualquier 
clase contenidos en este documento están protegidos.
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